

软件应用文档 AN2403-F0003CN01

版权和声明

版权

深圳市鼎阳科技股份有限公司版权所有

商标信息

SIGLENT是深圳市鼎阳科技股份有限公司的注册商标

声明

- 本公司产品受已获准及尚在审批的中华人民共和国专利的保护
- 本公司保留改变规格及价格的权利
- •本手册提供的信息取代以往出版的所有资料
- 未经本公司同意,不得以任何形式或手段复制、摘抄、翻译本手册的内容

产品认证

SIGLENT 认证本产品符合中国国家产品标准和行业产品标准,并进一步认证本产品符合其他国际标准组织成员的相关标准。

联系我们

深圳市鼎阳科技股份有限公司 地址:广东省深圳市宝安区 68 区安通达工业园一栋&四栋&五栋 服务热线:400-878-0807

E-mail: support@siglent.com

网址: <u>https://www.siglent.com</u>

- 1 引言

本文介绍 Siglent SigQPro 波形制作软件的用户自定义 OFDM 调制信号的生成功能,同时讲解 OFDM 系统的常见帧结构和子载波、导频、同步和数据部分等概念。

▲ 2 文档约束

本文中带方框的文字,表示软件的菜单按钮,带引号的斜字体表示菜单项,如: "Resource Mapp", Add

Preset 🕌 Save 🕌	Rec	all 🥧 D	ownload	W Update Quick Setu	^{ps} 🔻							
✓ Waveform Setup	Add	Add , Remove Copy Up Down										
Resource Mapping	#	Name	Enabled	Symbol Index	Subcarrier Index	Resource Mapping	Boost Level	Modulation	Payload / IQ Values			
		Preamble1	On	0,1	-24:4:-4,4:4:24	Preamble	1.472	N/A	1,			
		Preamble2	On	2,3	-26:-1,1:26	Preamble	1.000	N/A	-1,0,0,1,-1,0,0,1,-1,0,0,1,			
		Data1	On		-26:-1,1:26	Data	1.000	BPSK	PN9			
		Data2	On	5:63	-26:-1,1:26	Data	1.000	64QAM	PN9			
	~ 6	esource Bl	ock 1									
	N	lame		Preamble1		Enabled			Ý			
	s	ymbol Index				Subcarrier Ind	ex	-24:4:	4,4:4:24			
	R	esource Map	ping Orde	r Given Order		Resource Mapping		Pream	ble 🗸			
	E	loost Level		1472	1472		DFT Spread		~			
	Data Mode			IQ Values	\sim							
	Γ.											

◢ 3 OFDM 调制方式概述

OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上 OFDM 是 MCM Multi-Carrier Modulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换 成并行的低速子数据流,调制到在每个子载波上进行传输。每个子载波上的信号带宽小于信道的相关带宽, 因此每个子载波上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子载波的带宽仅仅是原 信道带宽的一小部分,信道均衡变得相对容易。

另外,OFDM 技术频谱效率高,由于FFT 处理使各子载波可以部分重叠,理论上可以接近 Nyquist 极限。由于目前 OFDM 通常使用 IFFT 方法实现,带宽扩展性强,可以在目前已经非常拥挤的频谱分配中配置 灵活的使用统带宽。由于每个 OFDM 子载波内的信道可看作水平衰落信道,多天线(MIMO)系统带来的额 外复杂度可以控制在较低的水平(随天线数量呈线性增加)。

由于上述种种优势, OFDM 技术现在被广泛的应用与各种宽带通信系统,如非对称的数字用户环路 (ADSL)、数字音频广播(DAB)、数字电视(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN), 以及最新的第4代移动通信LTE中。

由于上述的 OFDM 系统的灵活性,每一个的标准有各自不同的物理层参数,例如 NFFT、符号长度(子载波间隔)、CP(循环前缀)长度、导频(或者叫做参考信号)的插入方式、是否有 Preamble 等。

尽管针对上述各种标准信号(如WLAN、DVB、LTE等)都已经有成熟的商用信号生产软件,但是针对 一些非标准 OFDM 信号(如用户自定义的标准或者前沿研发的新标准),例如, 专网系统、科研、军事航 天等应用,可以使用 Matlab 等数学工具生成 IQ 数据,再导入信号源播放,当然也可以使用 Siglent SiglQPro 这样的商用软件里面的 Custom OFDM 模块,以图形和模块化的方式,定义 OFDM 帧结构,生成并下载到 Siglent 的矢量信号源。

SiglQPro 的 Custom OFDM 模块,集成了常见的 OFDM 系统中的 Resource 类型,例如, Preamble、Pilot、 Data 等,也内置了各种数据的调制方式,针对特殊的信号,例如 Zadoff-Chu 等序列,还可以直接导入每个 子载波的 IQ 值。

▲ 4 OFDM 系统基本构成

OFDM 系统由于其灵活性,要描述该系统需要很多参数,基本的参数如傅里叶变换次数 NFFT、采样速率、载波频率、CP 长度等简单参数。

但是最复杂的部分是如何定义各个子杂波、每个符号 Rl,k(下面简称单元 Cell)的调制方式,功能类型(如数 据或导频)以及增益/相对功率。由于这是一个二维矩阵, 而且数量较大。

▲ 5 配置过程和菜单详解

SiglQPro 采用结构化的方式定义帧结构:

打开软件之后,在主界面点击 Custom OFDM,即可进入自定义 OFDM 界面。

 Waveform Setup 	\checkmark Basic			
✓ Custom OFDM Resource Mapping	Waveform Name		Number of Frames	
Resource Mapping	Oversampling Ratio		Total Sample Points	
	Waveform Length		Mirror Spectrum	Off v
	arphi Crest Factor Reduction			
	Crest Factor Reduction	Off		
	\vee Multicarrier			
	Multicarrier Enabled	Off		

5.1 "Waveform Setup"界面

可以设置基本参数:过采样速率,帧个数,是否削峰(Crest Factor Reduction),是否需要开启多载波,是 否需要镜像频谱(即 IQ 交换,又称频谱翻转),其他参数根据本页和下面的参数自动计算。

5.2 Custom OFDM 基本参数

Preset 📕 Save		Recall 💰 Download \overline 🚮 Update	😨 Quick Setups 🖕				
✓ Waveform Setup		 General Settings 					
Resource Mapping		Idle Interval		System Sample Frequency	7.68 MHz		
		Half Subcarrier Shift	Off	Initial Phase			
		✓ OFDM Settings					
		FFT Length		Number of OFDM Symbols			
		Cyclic Prefix Length	40(0:7:133); 36	Cyclic Suffix Length			
		Guard Lower Subcarriers	106 Subcarriers	Guard Upper Subcarriers	105 Subcarriers		
		Subcarrier Spacing		Actual Signal Bandwidth			
		Power Reference Type	All Symbol(s)				
		 Spectrum Control 					
		Filter Enabled	Off				
		Window Beta		Windowing Method	Centered at Symbol Boundary 🛛 🗸		

Idel Interval: 在尾部增加空白时间,即 IQ 值为 0, 主要用于类似 WLAN 场景中,相邻 2 个帧(重复播放时的相邻 2 帧)之间的空白。

Half Subcarrier Shift: 主要是某些应用为了避免本振泄漏,把子载波偏移一半(但是 LTE 中直接不用 0 号子载波)

System Sample Frequency: 系统采样频率

FFT Length: 即 FFT 次数

Cyclic Prefix Length: 循环前缀长度,例如 40(0:7:133);36 表示 0、7、133 号符号的 CP 为 40,其他的为 36,单位是 Sample

Guard Lower/Upper Subcarriers: 上边/下边的保护子载波的个数

向导的主要目的是:以图形化方式,结合选择菜单,描述(定义)每一个单元 Cell 的功能、调制方式和增益 Boosting。

Subcarrier Spacing: 根据 System Sample Frequency 和 FFT Length 自动计算、

Actual Signal Bandwidth: 根据 FFT Length 和 Guard Subcarrier 自动计算有效的带宽

Power Reference Type: 功率参考模式,以那种方式作为功率的参考,如 All Symbols 就是仪器设置的射频 功率就是所以 Symbol 的平均功率。

Spectrum Control:设置滤波器,或者 Window 加窗,以限制带宽,代价是对 EVM 有些影响

5.3 Resource Mapping 资源映射

资源映射是最复杂也是最关键的功能,需要使用者对 OFDM 的基本元素,自定义的帧结构有深刻的理解, 其核心思想就是通过菜单的参数设置,定义 OFDM 帧的二维平面上每个元素 RE (Resource Element)的功能、属性、调制方式、载荷数据。

资源块(一个共同功能属性的 RE 的集合)基本属性有: Symbol Index(时域/符号)坐标范围, Subcarrier Index(子载波/频域)坐标范围;功能/特性/用途---Preamble、Pilot、Data; Boost Level—相对功率; Payload— 载荷数据类型。

点击表格上方的"Add"右侧箭头,选择一个类型(Preamble/Pilot/Data)即可添加一个资源块。

/

由于 RE 数量众多,需要一些简写的方式,来实现多个元素的映射定义。其基本语法和 C 语言或者 Matlab 的语法类似。

以 LTE 的 Cell RS 为例(在 Quick Settings 菜单下拉,选择 LTE: Downlink):在当前的 Cell ID 情况下, Cell RS 是在时域、频率离散插入的。类型是 Pilot, Pilot 需要定义固定的载荷数据。所以需要定义时、频域 坐标。

Name:给当前的资源块取一个名字

Symbol Index 时域坐标:有两组,注意两个大组是对应的,

起始0,终止133,步进7

起始4,终止137,步进7

Subcarrier Index 频域坐标:有两组,每组又分成2个小组,

起始-150,终止-6,步进6;起始1,终止145,步进6;

起始-147,终止-3,步进6;起始4,终止148,步进6

Resource Mapping Order: 资源映射顺序:

Given Order: 表示将资源块 Payload IQ 值序列按照参数 Symbol Index 与参数 Subcarrier Index 给出资源 单元的顺序进行映射。

Resource Order: 表示按照信道资源单元的 OFDM 符号与子载波编号由小到大的顺序进行映射。

两种映射顺序都按照子载波优先的规则进行映射,即先填充当前给出的 OFDM 符号上的所有给出子载波,再填充下一个给出 OFDM 符号上的信道资源单元。

Resource Mapping 当前资源块的类型(Add 的时候已经指定):

Preamble—前导,实际中不一定非要在帧的前面,其功能和 Pilot 类似,是发一些已知约定好的固定数据,

其 Data Mode 部分只能是 IQ Value, 需要指定每一个 RE 的 IQ 值 (会有表格编辑菜单弹出)

Pilot—导频,发一些已知约定好的固定数据,其 Data Mode 部分可以是 IQ Value 或 Payload Bit,如果是 IQ Value 类型,需要指定每一个 RE 的 IQ 值 (会有表格编辑菜单弹出)

Data—数据,如果选择数据类型,用户可以设定调制方式和数据类型(PN序列或者自定义数据)

LTE 的例子中 Cell-RS (小区参考信号)选择 Pilot 模式, Data Mode 选择 IQ Value,并点击下一行的"IQ Values"后面的编辑区域,会弹出窗口,让用户输入每个 Cell-RS 内部的 RE 的 IQ 数据,其 Subcarrier 和 Symbol 序号根据刚刚设置的 Subcarrier Index 和 Symbol Index 自动生成,只需给每一个 RE 填上对应数据 即可。本例中的数据,根据 3GPP 的 LTE 物理层定义和当前的 Cell ID,带宽等参数填入。

22_2	On		5 75	_31+_1 1+3							~	1	
3-33 01			5,75	-511,1.5	Values								
Cell-RS On {1 0:7:13		33},{2 4:7:137}	{1 -150:6:-6,1:6:	-150:6:-6,1:6: Import Export Clear									
PBCH	On	{1 7	7,8},{2 9,10}	{1 -35,-34,-32,-3	Subcarrier	Symbol0	Symbol4	Symbol7	Symbol11	Symbol14	Syl	h	
PDSCH	On		{1	{1 -150:-1,1:1	-150	1+i	-1+i	1+i	1-i	1+i		۷	
Resource Block 3						-1-i	1+i	1+i	1+i	1+i			
Name Cell-RS						-1-i	1+i	1-i	-1+i	-1-i			
Symbol Index {1 0.7:133},{2 4.7:137}					-132	1-i	-1-i	-1+i	1+i	-1-i		2	
Resource Map	ping Order		Resource Order		-126	1+i	1-i	-1+i	1-i	1-i			
Boost Level			0.707	-120	-1-i	-1+i	-1-i	1-i	-1+i				
Data Mode			IQ Values		-114	1+i	-1+i	1+i	1+i	1-i			
IQ Values			<u>11-1 1 1</u> [4000	number Array]					OK	Can	cel		

类似的,本例中的 PSS(主同步) 部分,这里类型是 Preamble, IQ Value 是 Zadoff-chu 序列对应的 IQ 值

~ \	Vaveform Setup	Add	 Remove 	Copy Up	Down									
	Custom OFDM Resource Manning # Name Enabled Sym				nbol Index Subcarrier Index			Resource Mapping		Modulation	Payl	oad / IQ Valu	ies	
	Resource Mapping	1	P-SS	On		6,76	-31:-1,1:31 -31:-1,1:31		Preamble	1.000	N/A	1,		
		2	S-SS	On		5,75			Preamble	1.000	N/A		1,	
3 Cell-RS O 4 PBCH O			Cell-RS	On	{1 0:7:1	133},{2 4:7:137}	{1 -150:6:-6,1:6:1	45},	Pilot	0.707	N/A			
				{1 7,8},{2 9,10}		{1 -35,-34,-32,-31,-29,		Data	1.000	1.000 QPSK		PN9		
			PDSCH				{1 -150:-1,1:150)},	Data	1.000	16QAM		PN9	
			esource R	lock 1										
		Ň	ame						Enabled					
Sumbal laday					676		dev	91-11-91						
Descuse Manine Order								Percentres Manping Propuble						
Resource wapping order Given order						Ť			pping	Fleat	Tible		~	
Boost Level							🖳 IQ Values	7-	Ze de ff Cleve		×	Ň		
Data Mode					IQ Values			Import Export Cle	ar 🕹 👌	Zadom-Chu				
IQ Values 1,0,-0.8,-0.6[248 numb						8 number Array]	nber Array] Subcarrier			Symbol6		bol76		
	I Q Spectrum ≀esour	ce Ma	apping Reso	ource Modula					21		1		1	
									-30	-0.797133	-0.603804i	-0.797133	-0.603804i	•
	192								-29	0.365341	-0.930874i	0.365341	-0.930874i	ot
S	64						0		-28	-0.733052	-0.680173i	-0.733052	-0.680173i	ected
arriei									-27	0.980172+	⊧0.198146i	0.980172	+0.198146i	
Subc	-64								-26	0.955573	+0.294755i	0.955573	0.294755i	
	-128								-25	-0.5-04	866025i	-0.5-0	366025i	
	-192									0.5 0.		OK	Cancel	
	-256 0 4 8 12 16	20	24 28 32	36 40	44 48	52 56 60 64	68 72 76 80	84 8	38 92 96 100 104	108 112 116	120 124 128	132 136	140	

-//-

▲ 6 图示

屏幕下方可以显示当前配置下的 IQ 时域图,频谱图,资源映射图(二维),资源块调制方式(二维),方便使用者观看每个资源块的映射和调制状态。

在上面的表格中选中的资源块,其 Resource Mapping 和 Resource Modulation 中会用红色显示。

_/__

任何参数改变之后, Update 菜单会闪烁, 提示需要点击 Update, 才能把当前的 IQ 数据更新, 更新完即可下载到仪器。

Save 有两种功能,如果选择文件类型是*.state,可以把当前的状态保持,以便下次调用;如果如果选择文件 类型是*.arb,即导出数据波形文件, arb 文件可以直接在仪器是打开播放。

▲ 8 小结

本文介绍了 OFDM 调制的基本组成部分,以 LTE 下行帧为例,介绍 Siglent SiglQPro 波形配置该波形的具体步骤和主要参数的解释,以此例为基础,用户可以方便的使用 SiglQPro 配置自定义的 OFDM 信号。 SiglQPro 功能齐全,设置方便,并具有完善的图形显示功能,让用户直观的看到生成的信号的时、频域分布, 并可以下载到 Siglent 矢量信号源和任意波形发生器,是专用 OFDM 信号生成和分析的有力助手。

关于鼎阳

鼎阳科技(SIGLENT)是通用电子测试测量仪器领域的行业领军企业, A股上市公司。

2002年,鼎阳科技创始人开始专注于示波器研发,2005年成功研制出 鼎阳第一款数字示波器。历经多年发展,鼎阳产品已扩展到数字示波 器、手持示波表、函数/任意波形发生器、频谱分析仪、矢量网络分析仪 、射频/微波信号源、台式万用表、直流电源、电子负载等基础测试测量 仪器产品,是全球极少数能够同时研发、生产、销售数字示波器、信号 发生器、频谱分析仪和矢量网络分析仪四大通用电子测试测量仪器主 力产品的厂家之一,国家重点"小巨人"企业。同时也是国内主要竞争 对手中极少数同时拥有这四大主力产品并且四大主力产品全线进入 高端领域的厂家。公司总部位于深圳,在美国克利夫兰、德国奥格斯堡 、日本东京成立了子公司,在成都成立了分公司,产品远销全球80多个 国家和地区,SIGLENT已经成为全球知名的测试测量仪器品牌。

联系我们

深圳市鼎阳科技股份有限公司 全国免费服务热线:400-878-0807 网址:www.siglent.com

声明

✓ SIGLENT № 是深圳市鼎阳科技股份有限公司的注册商标,事先未经过允许,不得以任何形式或通过任何方式复制本手册中的任何内容。
本资料中的信息代替原先的此前所有版本。技术数据如有变更,恕不另行通告。

技术许可

对于本文档中描述的硬件和软件,仅在得到许可 的情况下才会提供,并且只能根据许可进行使用 或复制。

